
Creating a Simple C Compiler
Zi Lin (1500014129)

June 1, 2017

1 Problem Statement
This is project of course 02032730, Principles of Compilers, in which I create a simple C

compiler with lex and yacc, but without semantic analyzer. In additional, I also make a program

to visualize the parse tree, you can use it with my python script.

The project is fairly limited in functions - it does not support array, structure, union, file,

set, switch statement, do statement and bit operation, etc. It only permits int and float as

data structures. And it will ignore the blank, tab and line break in your source code. However,

it is able to completely compile in terms of lexical analysis and language syntax.

The part lexical analysis parts are done in .lex file and the essential parts of a compiler are

integrated in .yacc file. The compilation steps are:

$ lex calculator.l //lexical analysis

$ yacc calculator.y //parser

$ parsing_tree.py //tree plotting

You can use the test code in parsing.txt to check the compiling process. And I will also

represent some of my codes as well as necessary statement in next chapters.

2 Lexical Analysis & Parsing
2.1 Lex - Defining Terminals

In calculator.l we should define all the potential tokens in our source codes using regular

expressions. The variable number here is initialized to 0 to mark the id of the token in order

to record them when in parsing. In printf , the output of ′@′ is to mark that it is the left part

of the grammar, and the output of ′$′ is to show that it is a terminal.

Here are some examples:

//Defining integer

[0−9]+{

yylval = number;

1

number++;

fprintf(yyout,"%dNUM@␣%d$%s\n",yylval, yylval, yytext);

return NUM;

}

//Defining identifier

[a−zA−Z][a−zA−Z0−9]*

{

yylval = number;

number ++;

fprintf(yyout,"%dID@␣%d$%s\n",yylval, yylval, yytext);

return ID;

}

//Defining type

int{ yylval = number; number ++; return INT;}

//Defining while

while {yylval = number; number ++; return WHILE;}

//Defining compare

\=\={

yylval = number;

number ++;

fprintf(yyout,"%dCOMPARE@␣%d$%s\n",yylval, yylval, yytext);

return COMPARE;

}

2.2 Yacc - Input Grammar Rules
In calculator.y we should input all the potential grammar rules. These are the grammar

given by the statement of assignment:

Function→Type identifier (ArgList) CompoundStmt

ArgList→Arg | ArgList , Arg | ϵ

Declaration→Type IdentList;

Type→int | float

IdentList→identifier , IdentList | identifier

Stmt→ForStmt | WhileStmt | Expr ; | IfStmt | CompoundStmt | Declaration| ϵ

2

ForStmt→for (Expr ; OptExpr ; OptExpr) Stmt

OptExpr→Expr | ϵ

WhileStmt→while (Expr) Stmt

IfStmt→if (Expr) Stmt ElsePart

ElsePart→else Stmt | ϵ

CompoundStmt→ StmtList

StmtList→StmtList Stmt | ϵ

Expr→identifier = Expr | Rvalue

Compare→ == | < | > | <= | >= | ! =

Mag→Mag + Term | Mag − Term | Term

Term→Term ∗ Factor | Term / Factor | Factor

Factor→(Expr) | − Factor | + Factor | identifier | number

First of all, we should make the definition of all the tokens and operator precedence.

%token NUM ID COMPARE INT FLOAT WHILE FOR IF ELSE

%left ′+′ ′−′

%left ′∗′ ′/′

Here are some samples of my codes. Notice that the variable number here is different from

number in file .lex, which is initialized to 500 in order to distinguish it from the token. Thus

the serial number will not be confusing. The value of the initialization depends on how many

tokens in your source code. Since different terminals and non-terminals have their own serial

numbers, and in the output we just put the number before them, it is clear where the non-

terminal comes from and where it is reduced. The reduction procedure is printed to the file

parsing_process.txt.

Function:

Type ID '(' ArgList ')' CompoundStmt

{

$$ = num_y;

fprintf

(yyout,

"%dFunction@␣%dType␣%dID␣%d$(␣%dArgList␣%d$)␣%dCompoundStmt\n",

num_y, $1, $2,$3, $4, $5, $6);++num_y;

};

3

Type:

INT

{

$$ = num_y;

fprintf(yyout,"%dType@␣%d$int\n", num_y, $1); ++num_y;

}

| FLOAT

{

$$ = num_y;

fprintf(yyout,"%dType@␣%d$float\n", num_y, $1);++num_y;

};

Factor:

'(' Expr ')'

{

$$ = num_y;

fprintf(yyout,"%dFactor@␣%d$(␣%dExpre␣%d$)\n",num_y,$1, $2, $3);

++num_y;

}

|'−' Factor

{

$$ = num_y;

fprintf(yyout,"%dFactor@␣%d$−␣%dFactor\n",num_y,$1, $2);

++num_y;

}

|'+' Factor

{

$$ = num_y;

fprintf(yyout,"%dFactor@␣%d$+␣%dFactor\n",num_y,$1, $2);++num_y;

}

|ID

{

$$ = num_y;

fprintf(yyout,"%dFactor@␣%dID\n",num_y,$1);++num_y;

}

|NUM

{

4

$$ = num_y;

fprintf(yyout,"%dFactor@␣%dNUM\n",num_y,$1);++num_y;

};

In order to import source code from file parsing.txt and output the reduction procedure

to file parsing_process.txt, we need to set the yyin and yyout. There is a risks of making

mistakes in the filein and fileout, you should check it carefully.

//define it at the very beginning in .y

extern FILE* yyin;

extern FILE* yyout;

int main(void) {

FILE* fp = fopen("parsing.txt","r");

FILE* fileOut = fopen("parsing_process.txt","w");

yyin = fp;

yyout = fileOut;

if(fp!=NULL && fileOut!=NULL){

yyparse();

//system("pause");

printf("parsing␣success!");

}

else{

printf("fail␣to␣open␣file!");

}

fclose(fp);

fclose(fileOut);

}

2.3 Test - Output the procedure
Once you code the lex and yacc files correctly, you can rebuild the whole project to check

the output of procedure(here in file parsing_process.txt).

I use the codes fact.c here to test my lex and yacc files. The source code is represented as

follow:

int fact ()

{

int n,f,i;

n = 8;

5

f = 1;

for (i= 2; i<= n; i = i+1)

f = f*i;

}

And the procedure is as follow(it is too long so I just post part of it). Notice that the

numbers in the front represent the serial numbers, ′@′ represents the left part of the grammar

and ′$′ is to show that it is a terminal.

500Type@ 0$int

1ID@ 1$fact

501ArgList@ 501$null

502StmtList@ 502$null

503Type@ 5$int

6ID@ 6$n

8ID@ 8$f

10ID@ 10$i

504IdentList@ 10ID

505IdentList@ 8ID 9$, 504Identlist

506IdentList@ 6ID 7$, 505Identlist

507Declarition@ 503Type 506IdentList 11$;

508Stmt@ 507Declarition

509StmtList@ 502StmtList 508Stmt

12ID@ 12$n

14NUM@ 14$8

......

2.4 Test - Tree Plotting
In this section I will introduce the method of visualizing the parse tree using a python pro-

gram with Graphviz. Graphviz is an open source graph visualization software for representing

structural information as diagrams of abstract graphs and networks. I simply apply the package

to my python script, which facilitates the creation and rendering of graph description in the

DOT language of Graphviz drawing software from Python.

First of all, we should sort out the data of nodes and edges. As for node, you should input

the IDs and names (the ID here is the serial number in lex and yacc). As for edge you should

input the source ID and target ID. What we have to do is to extract information from the

6

http://www.graphviz.org/
http://www.graphviz.org/doc/info/lang.html

output in section 2.3. The code is shown in parsing_tree.py. Remember that in the previous

sections we use ’@’ to mark the left part, which means that it is the parent node of the tree After

segmentation of the lines, the word without ’@’ is a child node, and in order to tell terminal

from non-terminal, the IDs of terminals include ’$’.

from graphviz import Digraph

import re #regular expression

#create a graph object

dot = Digraph(comment = "Parsing␣Tree")

#if you output dot, you will see "<graphviz.dot.Digraph object at 0x...>"

fileopen = open("parsing_process.txt")

for line in fileopen:

wordlist = line.split()

father = ''

num1 = ''

for word in wordlist:

#add nodes and edges

if word.find('@') != −1: #find patent nodes

father = word.strip('@');

num = re.search('[0−9]+[$]*',father)

num1 = num.group(0)

dot.node(num1, father.replace(num1,''))

else: #find child nodes

child = word

num = re.search('[0−9]+[$]*',child)

num2 = num.group(0)

dot.node(num2, child.replace(num2,''))

dot.edge(num1, num2)

#save and render the source code, optionally view the result

dot.render('test−output/parse−tree.gv', view=True)

#you can check the source code by print(dot.source)

fileopen.close()

By the way, if you encounter the error as follow:

>>> RuntimeError: failed to execute[’dot’, ’-Tpdf’, ’-0’, ’...’], make sure the Graphgviz

executables are on your systems’ path.

You should add path into your system variables. I run the program on Windows so it’s

7

necessary to set it.

1. Add system environment variable, create variable GRAPHV IZ_DOT and set the value

equals C:\Program Files (x86)\Graphviz-2.38\bin\dot.exe.

2. Set users’ PATH environment, add variable GRAPHV IZ_INSTALL_DIR, set the

value to be C:\Program Files (x86)\Graphviz-2.38.

3. Set system environment, add directory path bin (C:\Program Files (x86)\Graphviz-

2.38\bin) to variable PATH

If you still have some problems, please turn to Google :) And then you can check the plot you

create! Further more, you can try to set the order of the child nodes to promote the readability.

3 Project Reflection
I’d have to say, sometimes it feels quite annoyed when there are hundreds of errors shown in

error list, especially when the error is in the generating code of lex and yacc - really hard to tell

what goes wrong in those complicated codes. And it is useful to set some breakpoints or just

run your program step by step (but still helps little when it comes to the generating program).

What I learn is, never try to rebuild the project after you have written a large number of

codes, you just cannot figure out which part of it goes wrong, since the error could exist in any

place. Even if the Visual Studio tells you that you have successfully rebuilt the project, chances

8

are that you can still be confronted with lots of weird bugs when running it. Just test it step

by step, e.g. After writing the part of lex, you can try to input random digits or alphabets

to check whether they can be recognized as numbers or identifiers. By the way, some times

system(”pause”) helps.

In addition, pay attention to the ϵ and semicolons, it is very trivial but can make great

difference. Also notice what can be output and what is missing, printf helps you to position

errors.

I made some mistakes when I try to import source code from file and output the result to

file, because I have not programmed in C for long time (maybe one year...). And if you are not

sure how to call a function or operation for some particular purposes, you’d better check the

API.

Finding a proper package or software is a long process(maybe even longer than the time

spent in realizing it). Here are some packages you can also try for making visualization -

matplotlib, plotly, igraph etc. And you can also use treeplot in MATLAB (maybe should input

the level of the tree so I did not choose it).

Finally, thanks for checking my project and reading my report. Please forgive me if I have

any grammar mistakes. And I also welcome you to correct my program and give me some

suggestions.

9

https://matplotlib.org/
https://plot.ly/
http://igraph.org/redirect.html

	Problem Statement
	Lexical Analysis & Parsing
	Lex - Defining Terminals
	Yacc - Input Grammar Rules
	Test - Output the procedure
	Test - Tree Plotting

	Project Reflection

