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Introduction
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Meaning Representation Parsing
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The boy wants to believe the girl.

Parsing natural language sentences into a formal representation that encodes 
the meaning of a sentence (usually a graph).



Family of MRs

There is no universally accepted standard and existing MRs vary descriptively
and theoretically…

• Groningen Meaningbank: Discourse Representation Theory
• Redwoods corpus: Minimal Recursion Semantics
• Prague Dependency Treebank: Functional generative description
• Universal Cognitive Conceptual Annotation: Basic Linguistic Theory
• Abstract Meaning Representation: (Loosely) neo-Davidsonian with some

other stuff

Sorcha Gilroy, Adam Lopez. Graph Formalisms for Meaning Representations. EMNLP tutorials. 2018. 5



Parsing results reported in the literature
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MRs DRT MRS UCCA AMR
F1 77.51 90.92 69.93 74.44

1. Liu et al. 2018. Discourse representation structure parsing.
2. Chen et al. 2018. Accurate shrg-based semantic parsing.
3. Hershcovich et al.2019. SemEval 2019 shared task: cross-lingual semantic parsing with

UCCA call for participation.
4. Sheng Zhang et al, 2019. AMR parsing as sequence-to-sequence transduction.



Parsing results reported in the literature
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MRs DRT MRS UCCA AMR
F1 77.51 90.92 69.93 76.34

1. Liu et al. 2018. Discourse representation structure parsing.
2. Chen et al. 2018. Accurate shrg-based semantic parsing.
3. Hershcovich et al.2019. SemEval 2019 shared task: cross-lingual semantic parsing with

UCCA call for participation.
4. Sheng Zhang et al, 2019. AMR parsing as sequence-to-sequence transduction.



To develop the next generation MRs …

•Which aspects of the MR pose the most challenge to 
automatic parsing?

•Whether these challenges are “necessary evils”, or they
can be simplified without hurting the utility of the MR?
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MRS v.s. AMR
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From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
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Experiment
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Data preparation

• Dataset:
• SDP2015 for MRS
• LDC2016E25 for AMR

• Format unification: PENMAN format (using PyDelphin library)
• Parsing model: CAMR (Wang et al., 2015)
• Alignment:
• Gold for MRS
• JAMR (Flanigan et al., 2014) for AMR
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Parsing Result
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Analysis
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Concept detection

• The first step in constructing
a MR graph is determining
the nodes.
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Concept detection

• The first step in constructing
a MR graph is determining
the nodes.
• Word sense disambiguation
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Concept detection

• The first step in constructing
a MR graph is determining
the nodes.
• Word sense disambiguation
• Inferring abstract concepts
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Concept detection

• The first step in constructing
a MR graph is determining
the nodes.
• Word sense disambiguation
• Inferring abstract concepts
• Entity recognition
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Concept detection
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Concept detection

25



Concept detection
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• Word sense disambiguation
is not a major contributor to
the difficulty in concept
detection for AMR



Concept abstraction
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We took a closer look at how concept detection fared for lexical categories
that are known to have a complex mapping to the concepts they "evoke".

• Phrasal verbs (p.v.)
e.g. take a bath & bathe -> bathe-01

• Nouns (n.)
e.g. destruction & destroy -> destroy-01

• Adjectives (adj.)
e.g. attractive -> attract-01

• Adverbs (adv.)
e.g. quickly & quick -> quick-01

• Prepositions (prep.)
e.g. out of mind -> out-06

• Conjunctions (conj.)
e.g. but -> constrast-01

• Modal verbs (mod)
e.g. can (modal verbs) & possible -> possible-01



Concept abstraction
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Table 3: Individual percentages and scores for different types of AMR predicates

• Extract word or word sequences that align with these 
concepts

• Use a set of heuristics based on morpho-syntactic patterns 
to determine the type of abstraction in the test set



Concept abstraction
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Figure2: Relative improvement of performance on the test set
after correcting each type of POS or construction in AMR



Concept abstraction
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Figure2: Relative improvement of performance on the test set
after correcting each type of POS or construction in AMR

noun

verb



Concept abstraction
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Figure2: Relative improvement of performance on the test set
after correcting each type of POS or construction in AMR

preposition



Concept abstraction
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Figure2: Relative improvement of performance on the test set
after correcting each type of POS or construction in AMR

can & possible ->
possible-01

modal verb



Entity recognition
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We next examined how well entities are detected in AMR and MRS parsing.



Entity recognition
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We next examined how well entities are detected in AMR and MRS parsing.



Entity recognition
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We next examined how well entities are detected in AMR and MRS parsing.

• Date entity detection: AMR << MRS
• e.g. lunar calendar -> (d / date-

entity :calendar (m / moon))



Entity recognition
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We next examined how well entities are detected in AMR and MRS parsing.

• Date entity detection: AMR << MRS
• e.g. lunar calendar -> (d / date-

entity :calendar (m / moon))
• Name entity: AMR << MRS

• detection: AMR > MRS
• Name entity classification: not needed

for MRS



Relation detection

• The subtask of relation detection involves identifying and labeling
the edges in the MR graph.
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Relation detection

• The subtask of relation detection involves identifying and labeling
the edges in the MR graph.
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Relation detection

• The subtask of relation detection involves identifying and labeling
the edges in the MR graph.
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(w / want-01 
:ARG0 (b / boy) 
:ARG1 (b2 / believe-01

:ARG0 (g / girl) 
:ARG1 b))



Relation detection

• The subtask of relation detection involves identifying and labeling
the edges in the MR graph.
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• SRL accuracy: AMR << MRS
• Reentrancy: AMR << MRS
• Number of reentrancy: AMR >> MRS



Prepositional phrases
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• MRS treats prepositions as predicates, and labels their arguments.
• AMR just drops the preposition when it introduces an oblique argument 

for a verbal predicate.

MRS:

AMR:



Coreference

• AMR resolves sentence-level coreference.
• MRS does not resolve coreference and each instance of the same 

entity will be a separate concept in the MRS graph.
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MRS:

AMR:



Summary

• AMR concepts show a higher level of abstraction from surface forms

• AMR does a much more fine-grained classification for the named 
entities than MRS

• Semantic relations are defined differently in AMR and MRS

43



Summary

• AMR concepts show a higher level of abstraction from surface forms

• AMR does a much more fine-grained classification for the named 
entities than MRS

• Semantic relations are defined differently in AMR and MRS
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These have all contributed to the performance gap between MRS
and AMR parsing.

The question is: should AMR be simplified to improve the accuracy
of AMR parsing?



Summary
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Thank you!


