Parsing Meaning Representations:

1s Haster Always Better?

Z1 Lin, Nlanwen Xue
Peking University & Brandeis University
DMR@ACL | 2019



Overview

e Introduction

* MRS v.s. AMR

o Experiment

* Analysis
* Concept detection

e Relation detection



Introduction




Meaning Representation Parsing

Parsing natural language sentences into a formal representation that encodes
the meaning of a sentence (usually a graph).
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Family of MRs

There is no universally accepted standard and existing MRs vary descriptively
and theoretically:

* Groningen Meaningbank: Discourse Representation Theory
* Redwoods corpus: Minimal Recursion Semantics
* Prague Dependency Treebank: Functional generative description

Universal Cognitive Conceptual Annotation: Basic Linguistic Theory

Abstract Meaning Representation: (Loosely) neo-Davidsonian with some
other stuff

Sorcha Gilroy, Adam Lopez. Graph Formalisms for Meaning Representations. EMNLP tutorials. 2018. 5



Parsing results reported in the literature

F1 77.51 90.9° 69.93 74.4%

Liu et al. 2018. Discourse representation structure parsing.
Chen et al. 2018. Accurate shrg-based semantic parsing.
3. Hershcovich et al.2019. SemkEval 2019 shared task: cross-lingual semantic parsing with

UCCA call for participation.
4. Sheng Zhang et al, 2019. AMR parsing as sequence-to-sequence transduction.
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Parsing results reported in the literature

MRS AMR
F1 77.51 90.9° 69.93 76.34

Liu et al. 2018. Discourse representation structure parsing.
Chen et al. 2018. Accurate shrg-based semantic parsing.
3. Hershcovich et al.2019. SemkEval 2019 shared task: cross-lingual semantic parsing with

UCCA call for participation.
4. Sheng Zhang et al, 2019. AMR parsing as sequence-to-sequence transduction.
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To develop the next generation MRs ...

* Which aspects of the MR pose the most challenge to
automatic parsing?

* Whether these challenges are “necessary evils” , or they
can be simplified without hurting the utility of the MR?



MRS v.s. AMR




From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.

é year
K date-entity

“9,300,000,000"




From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.

MRS | AMR

_Clgarette n_1
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From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.

_cigarette n_1

“1000,000,000 ” “9,800,000,000"




From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.

_from_p_time to p
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From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
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_from._p_time P date-interval
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From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.

Following PropBank

é year
K date-entity

“9,300,000,000"




Experiment
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Data preparation

* Dataset:
e SDP2015 for MRS
e |DC2016E25 for AMR

* Format unification: PENMAN format (using PyDelphin library)
* Parsing model: CAMR (Wang et al., 2015)

* Alignment:
* Gold for MRS
* JAMR (Flanigan et al., 2014) for AMR
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Parsing Result

MRS AMR

Train  Dev Test | Train  Dev Test
number of graphs/sentences 35,315 1,410 1,410 | 36,521 1,368 1,371
number of tokens per sentence | 22.33 2292 2314 | 17.83 21.59 22.10
number of nodes per token 096 097 0.93 0.68 0.70 0.70

Node Edge Swmarca | Node Edge Swmarcn
CAMR 89.4  8l.1 85.3 78.7  57.1 68.0
Buys and Blunsom (2017) 89.1 85.0 87.0 - - 61.2
Chen et al. (2018) 945 87.3 90.9 - - -
Lyu and Titov (2018) - - - 859  69.8 74.4

/A SMATCH
-17.3
-25.8
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Analysis




Concept detection

* The first step In constructing
a MR graph i1s determining
the nodes.

20



Concept detection

* The first step In constructing
a MR graph i1s determining
the nodes.

* Word sense disambiguation

sell-01: commerce: seller, giving In
exchange for money

sell out-02: give in to the man
sell_out-03: sell until none i1s/are left

“9,300,000,000"
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Concept detection

* The first step In constructing
a MR graph i1s determining
the nodes.

* Word sense disambiguation
* Inferring abstract concepts

“9,300,000,000"
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Concept detection

* The first step In constructing
a MR graph i1s determining
the nodes.

* Word sense disambiguation
* Inferring abstract concepts
* Entity recognition

“9,300,000,000"
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Concept detection

MRS
POS % #lemma #sense average score WSD
n| 34.46 1,420 1,434 1.01 9535 99.76
v | 20.37 838 1,010 1.21 85.56  90.58
q| 13.97 25 25 1.00 98.22 100.00
p| 12.86 96 123 1.28 81.29 76.11
a| 11.45 637 648 1.02 90.58 99.90
C 4.20 17 19 1.12 9446 99.61
X 2.69 80 81 1.01 73.65 99.74
total | 100.00 3,113 3,340 1.07 90.78  97.06
AMR
pred - 1,292 1,440 1.11  77.93 9454
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Concept detection

MRS
POS % #lemma #sense average score WSD
n| 34.46 1,420 1,434 1.01 9535 99.76
v | 20.37 838 1,010 1.21 85.56  90.58
q| 13.97 25 25 1.00 98.22 100.00
p| 12.86 96 123 1.28 81.29 76.11
a| 11.45 637 648 1.02 90.58 99.90
C 4.20 17 19 1.12 9446 99.61
X 2.69 80 81 1.01 73.65 99.74
total | 100.00 3,113 3,340 1.07 97.06
AMR
pred - 1,292 1,440 1.11 94.54
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Concept detection

MRS * Word sense disambiguation
n | 34.46 1,420 1,434 1.01 9535 99.76 the difficulty iIn concept
v | 20.37 838 1,010 1.21 85.56  90.58 d -
’ etection for AMR
q| 13.97 25 25 1.00 98.22 100.00
p| 12.86 96 123 1.28 81.29 76.11
a| 1145 637 648 1.02 90.58  99.90
C 4.20 17 19 1.12 9446 99.61
X 2.69 80 81 1.01  73.65 99.74
total | 100.00 3,113 3,340 1.07
AMR
pred - 1,292 1,440 1.11
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Concept abstraction

We took a closer look at how concept detection fared for lexical categories
that are known to have a complex mapping to the concepts they “"evoke".

* Phrasal verbs (p.v.) * Prepositions (prep.)

e.g. take a bath & bathe -> bathe-01 e.g. out of mind -> out-06

* Nouns (n.) * Conjunctions (conj.)

e.g. destruction & destroy -> destroy-01 e.g. but -> constrast-01

* Adjectives (ad).) * Modal verbs (mod)

e.g. attractive -> attract-01 e.g. can (modal verbs) & possible -> possible-01

* Adverbs (adv.)
e.g. quickly & quick -> quick-01
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Concept abstraction

* Extract word or word sequences that align with these

concepts
* Use a set of heuristics based on morpho-syntactic patterns

to determine the type of abstraction in the test set

type n. adj. adv.  prep. conj. mod. p.v.  other V.
%o 35.09 10.05 1.87 1.17 .01 259 031 0.15 47.76
Performance | 83.01 84.44 80.73 73.53 96.61 6696 83.33 4444 74.07

Table 3: Individual percentages and scores for different types of AMR predicates

28



Concept abstraction
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Concept abstraction
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Concept abstraction
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Concept abstraction
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Entity recognition

We next examined how well entities are detected in AMR and MRS parsing.

Example AMR MRS
lunar calendar (d / date-entity :calendar (m / moon)) —
December (8th) | (d / date-entity :month 12) (x1 / mofy :carg "Dec")
Monday (d / date-entity :weekday (m / monday)) (x1 / dofw :carg "Mon")
(December) 8th | (d / date-entity :day 8) (x1 / dofm :carg "8")
night (d / date-entity :dayperiod (n / night)) | -

(cl / city (x1 / named :carg "York"
New York :name (nl / name :ARG1l-0of (el / compound

:opl "New" :op2 "York")) :ARG2 (x2 / named :carg "New")))
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Entity recognition

We next examined how well entities are detected in AMR and MRS parsing.

dataset MRS AMR

# score # score
date entity 266 9248 273 66.67
NE detection 2,555 81.96 | 2,065 91.09
NE classification - - - 7646

Table 5: Results on entity recognition on the test set
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Entity recognition

We next examined how well entities are detected in AMR and MRS parsing.

* Date entity detection: AMR << MRS

dataset MRS AMR
4 score 4 score * e.g. lunar calendar -> (d / date-
entity :calendar (m / moon))
date entity 266 92.48 273  66.67
NE detection 2,555 81.96 | 2,065 91.09
NE classification - - - 76.46

Table 5: Results on entity recognition on the test set
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Entity recognition

We next examined how well entities are detected in AMR and MRS parsing.

* Date entity detection: AMR << MRS

dataset MRS AMR
4 score 4 score * e.g. lunar calendar -> (d / date-
entity :calendar (m / moon))
date entity 266 9248 273 66.67 « Name entity: AMR << MRS
NE detection 2,555 81.96 | 2,065 91.09 e detection: AMR > MRS
NE classification - - - 76.46 * Name entity classification: not needed

for MRS
Table 5: Results on entity recognition on the test set
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Relation detection

* The subtask of relation detection involves identitying and labeling
the edges in the MR graph.
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Relation detection

* The subtask of relation detection involves identitying and labeling
the edges in the MR graph.

dataset MRS AMR
# score # score
Overall - 81.76 - 61.52

All matched | 3,398 63.48 | 4,975 44.77

ARGO | 3,087 62.00 | 3,680 49.43
ARGI | 2985 68.45 | 5,377 53.97
ARG2 339 35.09 | 1,614 37.86
ARG3 7 57.13 123 14.63
ARG4 - - 39 20.51

Reentrancy 807 81.28 | 1,723 4391

Table 6: Results on SRL. MRS’s argument number be-
gins at 1 so we just move all the argument to begin at 0
to make them comparable. 38



Relation detection

* The subtask of relation detection involves identitying and labeling
the edges in the MR graph.

(w / want-01

dataset MRS AMR :ARGO (b / boy)
# # .
>CoTe >eoTe :ARG1 (b2 / believe-01
Overall - 81.76 - 61.52 :ARGO (g / girl)
All matched | 3,398 63.48 | 4975 44.77 :ARG1 b))
ARGO | 3,087 62.00 | 3,680 49.43
ARGI | 2,985 68.45 | 5377 53.97 —__ ARG1
ARG?2 339 35.09 | 1,614 37.86 instance \\\\\\A
ARG3 7 57.13 123 14.63 instance /| = ARo1
ARG4 - - 39 20.51 v |
believe-01 | ARGO
Reentrancy 807 81.28 | 1,723 4391 want-01 \ J
\\ instance
Table 6: Results on SRL. MRS’s argument number be- et v f\ V
instance / \

gins at 1 so we just move all the argument to begin at 0 girl

to make them comparable. 39



Relation detection

* The subtask of relation detection involves identitying and labeling
the edges in the MR graph.

dataset MRS AMR * SRL accuracy: AMR << MRS
# #
o o  Reentrancy: AMR << MRS
Overall | - 8176| - 61.52

o :
All matched | 3,398 63.48 | 4,975 44.77 Number of reentra ney. AMR >> MRS
ARGO | 3,087 62.00 | 3,680 49.43
ARGI | 2,985 68.45 | 5,377 53.97
ARG2 339 35.09 | 1,614 37.86
ARG3 7 57.13 123 14.63
ARG4 - - 39 20.51

Reentrancy 807 81.28 | 1,723 4391

Table 6: Results on SRL. MRS’s argument number be-
gins at 1 so we just move all the argument to begin at 0
to make them comparable. 40



Prepositional phrases

* MRS treats prepositions as predicates, and labels their arguments.
* AMR just drops the preposition when it introduces an oblique argument

for a verbal predicate.

(ARGO

(- ./
MRS: —ARGO ARGl
loc_nonsp) ’ ARGl
|

The exports increased 4% from the same period to $50.45 billion.

f J

AMR: ARG3|
L—Jrﬁ
| ARG4 |
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Coreference

* AMR resolves sentence-level coreference.

* MRS does not resolve coreference and each instance of the same
entity will be a separate concept in the MRS graph.

MRS: (ARG1) (ARGO]

\ 4 | Y

Knowing a tasty meal when they eat one, the executives gave the chefs a standing ovation.

AMR
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Summary

* AMR concepts show a higher level of abstraction from surface forms

* AMR does a much more fine-grained classification for the named
entities than MRS

* Semantic relations are defined differently in AMR and MRS

43



Summary

* AMR concepts show a higher level of abstraction from surface forms

* AMR does a much more fine-grained classification for the named
entities than MRS

* Semantic relations are defined differently in AMR and MRS

These have all contributed to the performance gap between MRS
and AMR parsing.

The question i1s: should AMR be simplified to improve the accuracy
of AMR parsing?
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Thank you!



