Semantic Role Labeling for Learner Chinese: the Importance of Syntactic Analysis and L2-L1 Parallel Data

Zi Lin, Yuguang Duan, Yuanyuan Zhao, Weiwei Sun, Xiaojun Wan

Peking University
{zi.lin, ariaduan, zhao_yy, ws, wanxiaojun}@pku.edu.cn

October 25, 2018
Overview

Background

Data Set

Robustness of L1-annotation-trained SRL Systems

Analysis

Improving SRL Systems with L2-L1 Parallel Data
Outline

Background

Data Set

Robustness of L1-annotation-trained SRL Systems

Analysis

Improving SRL Systems with L2-L1 Parallel Data
What is interlanguage?

A second language (or L2) which preserves some features of their first language (or L1).
What is interlanguage?

A second language (or L2) which preserves some features of their first language (or L1).
What is interlanguage?

A second language (or L2) which preserves some features of their first language (or L1).
Altruism is a type of behavior in which an animal sacrifices its own interest for that of another animal or group of animals. Altruism is the opposite of selfishness; individuals performing altruistic acts gain nothing for themselves.

Examples of altruism abound, both among humans and among other mammals. Unselfish acts among humans range from the sharing of food with strangers to the donation of organs to family members and even to strangers, and the act itself, but what they benefit, other, yet provide little reward to the one performing the act.

In fact, many species of animals appear willing to sacrifice food, or even their life, to assist other members of their group. The meerkat, which is a mammal that dwells in burrows in grassland areas of Africa, is often cited as an example. In groups of meerkats, an individual acts as a sentinel, standing guard and looking out for predators while the others hunt for food or eat food they have obtained. If the sentinel meerkat sees a predator such as a hawk approaching the group, it gives an alarm cry alerting the other meerkats to run and seek shelter. By standing guard, the sentinel meerkat gains nothing—it goes without food while the others...
Interlanguage is everywhere...

Our paper "Semantic Role Labeling for Learner Chinese: the Importance of Syntactic Parsing and the L2-L1 Parallel Data" has been accepted to @emnlp2018. Thanks for my supervisor Weiwei Sun and all the co-authors! See you in Brussels!

1:25 PM - 10 Aug 2018

Social Network
Interlanguage is everywhere...

Semantic Role Labeling for Learner Chinese: the Importance of Syntactic Parsing and L2-L1 Parallel Data

Zi Lin, Yuguang Duan, Yuanyuan Zhao, Weiwei Sun and Xiaojun Wan

1Institute of Computer Science and Technology, Peking University
2The MOE Key Laboratory of Computational Linguistics, Peking University
3Department of Chinese Language and Literature, Peking University
4Center for Chinese Linguistics, Peking University
5Academy for Advanced Interdisciplinary Studies, Peking University

{zi.lin, ariaduan, ws, wanxiaojun}@pku.edu.cn, zhaoyy1461@gmail.com

And perhaps your paper...
Outline

Background

Data Set

Robustness of L1-annotation-trained SRL Systems

Analysis

Improving SRL Systems with L2-L1 Parallel Data
L2-L1 Parallel Data

Collect a large dataset of L2-L1 parallel texts of **Mandarin** by exploring “language exchange” social networking services – lang-8\(^1\).

\(^1\)http://lang-8.com/
Data for SRL annotation

Initial collection
1,108,907 pairs

clean up
717,241 pairs

manual selection
600 pairs

segmentation

SRL annotation

4 typologically different mother tongues

Language

Family

Chinese
Sino-Tibetan

Russian
Slavic

Arabic
Semitic

Japanese
Unknown

English
Germanic
Data for SRL annotation

Initial collection: 1,108,907 pairs

Clean up: 717,241 pairs

Manual selection: 600 pairs

Segmentation: SRL annotation

4 typologically different mother tongues
Data for SRL annotation

Initial collection 1,108,907 pairs

clean up

717,241 pairs

manual selection

600 pairs

SRL annotation

4 typologically different mother tongues

<table>
<thead>
<tr>
<th>Language</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>Sino-Tibetan</td>
</tr>
<tr>
<td>Russian</td>
<td>Slavic</td>
</tr>
<tr>
<td>Arabic</td>
<td>Semitic</td>
</tr>
<tr>
<td>Japanese</td>
<td>Unknown</td>
</tr>
<tr>
<td>English</td>
<td>Germanic</td>
</tr>
</tbody>
</table>
Data for SRL annotation

- Initial collection: 1,108,907 pairs
- Clean up: 717,241 pairs
- Manual selection: 600 pairs
- SRL annotation

4 typologically different mother tongues:
- Chinese: Sino-Tibetan
- Russian: Slavic
- Arabic: Semitic
- Japanese
- English: Germanic
Data for SRL annotation

Initial collection 1,108,907 pairs → clean up → 717,241 pairs → manual selection → 600 pairs → segmentation → SRL annotation

4 typologically different mother tongues

<table>
<thead>
<tr>
<th>Language</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>Sino-Tibetan</td>
</tr>
<tr>
<td>Russian</td>
<td>Slavic</td>
</tr>
<tr>
<td>Arabic</td>
<td>Semitic</td>
</tr>
<tr>
<td>Japanese</td>
<td>Unknown</td>
</tr>
<tr>
<td>English</td>
<td>Germanic</td>
</tr>
</tbody>
</table>
Two Questions

1. Can human understand interlanguage robustly?

2. Can automatic system produce high-quality semantic structures?
Can human understand interlanguage robustly?

😊 It is difficult to define the syntactic formulism of learner language.
😊 But sometimes we can understand what they mean...

Why not Semantics?
Can human understand interlanguage robustly?

😊 It is difficult to define the syntactic formulism of learner language.
😊 But sometimes we can understand what they mean...

I HAVE 27 YEARS

DO YOU MEAN "I AM 27 YEARS OLD"?

Why not Semantics?
Can human understand interlanguage robustly?

😊 It is difficult to define the syntactic formulism of learner language.
😊 But sometimes we can understand what they mean...

I HAVE 27 YEARS
DO YOU MEAN "I AM 27 YEARS OLD"?

Why not Semantics?
Semantic Role Labeling

Argument (AN): Who did what to whom?

Adjunct (AM): When, where, why and how?

I ate breakfast quickly in the car this morning because I was in a hurry.
Inter-annotator agreement

- **Annotator**: two Linguistic students
- **The first 50-sentence trial set**: adapting and refining CPB specification
- **The rest 100-sentence set**: reporting the inter-annotator agreement
Inter-annotator agreement

- **Annotator:** two Linguistic students
- **The first 50-sentence trial set:** adapting and refining CPB specification
- **The rest 100-sentence set:** reporting the inter-annotator agreement
Two Questions

1. Can human understand interlanguage robustly?

2. Can automatic system produce high-quality semantic structures?
Outline

Background

Data Set

Robustness of L1-annotation-trained SRL Systems

Analysis

Improving SRL Systems with L2-L1 Parallel Data
Three SRL systems

- Syntax for Semantic Role Labeling, To Be, Or Not To Be. (2018). He et al.
 EMNLP 2018 Best Paper

Trained on Chinese TreeBank that has SRL in CPB

Parsers
- Berkeley parser
- Minimal span-based parser

Performance <

Systems
- PCFGLA-parser-based SRL system
- Neural-parser-based SRL system
- Neural syntax-agnostic SRL system

Trained on Chinese PropBank (CPB)
Results

Performance on L1 & L2

A: PCFGLA-parser-based
B: Neural-parser-based
C: Neural syntax-agnostic
Results

Performance on L1 & L2

A: PCFGLA-parser-based
B: Neural-parser-based
C: Neural syntax-agnostic

<table>
<thead>
<tr>
<th>Language</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>74</td>
<td>72</td>
</tr>
<tr>
<td>JPN</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>RUS</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>ARA</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td>ALL</td>
<td>74</td>
<td>72</td>
</tr>
</tbody>
</table>
Findings

The syntax-based systems are more robust when handling learner texts.

Performance on L1 & L2

A: PCFGLA-parser-based
B: Neural-parser-based
C: Neural syntax-agnostic

The syntax-based systems are more robust when handling learner texts.
The better the parsing results we get, the better the performance on L2 we achieve.
Outline

Background

Data Set

Robustness of L1-annotation-trained SRL Systems

Analysis

Improving SRL Systems with L2-L1 Parallel Data
Why syntactic analysis is important?

Using Chinese and also speaking quickly is very hard for me.
Why syntactic analysis is important?

- Though the whole structure is **ill-formed**
Why syntactic analysis is important?

Partial of the sentence can be well-formed.
A new Questions

1. Can human understand interlanguage robustly?

2. Can automatic system produce high-quality semantic structures?

3. Can we improve the SRL performance on interlanguage?
Outline

Background

Data Set

Robustness of L1-annotation-trained SRL Systems

Analysis

Improving SRL Systems with L2-L1 Parallel Data
Leveraging L2-L1 Parallel Data

😊 我 喜欢 做 中国菜
I like cooking Chinese food

😊 我 喜欢 做饭
I like cooking meal

😊 我 喜欢 做饭 中国菜
I like cook-meal Chinese food
Leveraging L2-L1 Parallel Data

I like cooking Chinese food.

I like cooking meal.

I like cook-meal Chinese food.
Leveraging L2-L1 Parallel Data

我 喜欢 做 中国菜
I like cooking Chinese food

我 喜欢 做饭
I like cooking meal

我 喜欢 做饭 中国菜
I like cook-meal Chinese food
Leveraging L2-L1 Parallel Data

\(\langle \text{predicate, argument, role} \rangle \) tuples

L1:

ARG0

我 喜欢 做 中国菜

I like cooking Chinese food

ARG1

我 喜欢 做 中国菜

I like cooking Chinese food

L2:

ARG0

我 喜欢 做饭 中国菜

I like cook-meal Chinese food

ARG1

我 喜欢 做饭 中国菜

I like cook-meal Chinese food

of shared tuples = 1
Leveraging L2-L1 Parallel Data

Metric for comparing SRL results

- L2-recall:
 \[
 \frac{\text{(\# of shared tuples) \}}{\text{(\# of tuples of the result in L2)}}
 \]

- L1-recall:
 \[
 \frac{\text{(\# of shared tuples) \}}{\text{(\# of tuples of the result in L1)}}
 \]

Well-formed sentence pair if both are greater than \(\lambda\)
Retraining two essential modules

1. **Retrain the parser**: Using the automatically generated syntactic trees of the well-formed sentence pairs

Parsers
- Berkeley parser
- Minimal span-based parser

Systems
- PCFGLA-parser-based SRL system
- Neural-parser-based SRL system
- Neural syntax-agnostic SRL system
Retraining two essential modules

1. **Retrain the parser:** Using the automatically generated syntactic trees of the well-formed sentence pairs

 - **Berkeley parser**
 - **Minimal span-based parser**

 ![Performance](<symbol>)

2. **Retrain the semantic classifier:** using the outputs of the L1 generated by the neural syntax-agnostic SRL system.

 - **PCFGLA-parser-based SRL system**
 - **Neural-parser-based SRL system**
 - **Neural syntax-agnostic SRL system**
Results

- L1
- L2
Results
Results
Thanks for your attention!

Zi Lin is planning to apply for PhD program in CS or linguistics this fall. Email me at zi.lin@pku.edu.cn if you are interested!